Peranan kimia dalam pertanian
Sumber : http://googleweblight.com/?lite_url=http://dodyanggriawanharh.blogspot.com/2013/11/peran-ilmu-kimia-dalam-pertanian.html?m%3D1&ei=BRcx6jjW&lc=id-ID&s=1&m=851&host=www.google.co.id&ts=1462671049&sig=APY536w1DCN58s2uQV_SF0tIvjlmRPzJ0
- Dalam tulisan ini akan dibahas mengenai peranan kimia dalam pertanian yaitu fungsi dan pengaruh unsur hara dala tanah serta macam-macam pupuk buatan. Berikut uraian Peranan kimia dalam pertanian.
1. Fungsi dan Pengaruh Unsur Hara
Pada dasarnya, makhluk hidup, baik manusia, hewan, dan tanaman memerlukan makanan untuk tumbuh dan berkembang biak. Tanaman mengambil makanan dari tanah. Tanah yang gembur dan subur dapat menghasilkan tanaman yang subur (perhatikan Gambar 10.17). Kesuburan tanaman merupakan akibat dari terpenuhinya kebutuhan berbagai senyawa dan mineral, yang disebutunsur hara.
Gambar 10.17Pemenuhan kebutuhan unsur hara dari pupuk menjadikan tanaman subur.
Unsur-unsur C, H, dan O sebagian besar dikonsumsi dalam bentuk senyawa CO2 dan H2O. Senyawa CO2diserap dari udara melalui klorofil daun, sedangkan H2O diserap dari tanah melalui akar. Unsur-unsur lain diserap dari tanah melalui akar. Unsur N terdapat banyak di udara dalam bentuk N2, tetapi tidak dapat digunakan langsung karena tanaman pada umumnya menggunakan unsur N dalam bentuk senyawa nitrat. Selain itu, pada tanaman kacang tanah, akarnya dapat mengikat langsung gas N2 dari udara. Unsur N diperlukan tanaman untuk pertumbuhan, terutama untuk pembentukan batang dan daun. Secara khusus, unsur N berguna untuk pembentukan protein, lemak, dan enzim. Kekurangan unsur N dapat menyebabkan tanaman menjadi kurus dan kerdil. Unsur lain yang banyak diperlukan adalah fosfor dan kalium. Unsur fosfor diperlukan tanaman untuk pembentukan akar dan asimilasi tanaman. Kekurangan unsur fosfor dapat menyebabkan tanaman menjadi kerdil dan pertumbuhan juga terhambat. Unsur kalium berguna untuk pembentukan protein dan karbohidrat melalui peningkatan proses fotosintesis bersama-sama dengan unsur Mg. Selain itu, unsur K dapat memperkuat bunga dan buah sehingga dapat meningkatkan produksi tanaman. Kekurangan unsur K dapat menimbulkan daun mengerut dan keriting serta timbul bercak cokelat kemerah-merahan yang akhirnya layu, mengering, dan mati. Selama pertumbuhan, tanaman mengambil unsur-unsur N, P, dan K dari tanah. Tanaman yang tidak dikonsumsi oleh manusia akan mati dan mengembalikan unsur-unsur tersebut ke dalam tanah. Pada lahan tanah yang tanamannya dipanen akan mengalami kekurangan unsur-unsur tersebut. Dengan kata lain, lahan pertanian sudah berkurang kesuburannya. Pada pola pertanian tradisional, para petani menanam polongpolongan guna mengembalikan kesuburan tanah. Hal ini disebabkan akar polong-polongan mampu mengikat nitrogen dari udara dan diubah menjadi senyawa amonia dengan bantuan bakteri tanah. Untuk lahan sangat luas, pola tradisonal dinilai kurang ekonomis. Sebagai upaya pengganti penyediaan unsur hara yang dibutuhkan tanaman, pakar kimia mengembangkan material, dinamakan pupuk.
2. Macam-macam Pupuk Buatan
Tujuan pemupukan adalah untuk menyempurnakan kebutuhan unsur-unsur hara bagi tanaman. Gambar 10.18 merupakan kegiatan pemupukan yang dilakukan manusia untuk menyempurnakan unsur hara yang terkandung di dalam tanah dan bermanfaat bagi tanaman.
a. Kadar Nitrogen dalam Pupuk
Jenis pupuk nitrogen yang banyak digunakan adalah pupuk urea dan pupuk ZA (amonium nitrat). Kadar nitrogen dalam pupuk urea sekitar 46,7%. Kadar ini cukup tinggi untuk tanaman sehingga penggunaan urea harus tepat. Agar mudah dalam penggunaan pupuk nitrogen perlu diubah dari bentuk padat
Tabel 10.4 Kadar Nitrogen dalam Pupuk
Pupuk | Kadar Nitrogen |
Urea | ±45% |
ZA | ± 20% |
Urea diproduksi melalui reaksi antara amonia dan karbon dioksida pada suhu 140°C dan tekanan 100 atm. Persamaan reaksinya:
2NH3(g) + CO2(g) →NH2CONH2(s) + H2O(l)
Dalam air, urea bersifat netral dan mudah larut. Urea dikonsumsi oleh tanaman tidak langsung, tetapi harus diubah dulu menjadi senyawa nitrat oleh bakteri tanah. Pupuk ZA dihasilkan dari reaksi antara amonia dan asam nitrat, persamaan reaksinya:
NH3(g) + HNO3(aq) →NH4NO3(s)
Pupuk ZA dapat dikonsumsi langsung oleh tanaman. Akan tetapi, kendalanya dalam air, pupuk ZA bersifat asam sehingga tanah menjadi asam. Oleh karena itu, pupuk ZA kurang tepat dipakai sebagai pupuk dasar, kecuali dicampur dengan kapur agar tanah menjadi netral.
Gambar 10.20Siklus nitrogen di udara
Kedua jenis pupuk nitrogen tersebut menggunakan bahan baku amonia. Di industri, amonia disintesis dari gas nitrogen yang berasal dari udara. Hal ini menunjukkan alam merupakan sumber bahan industri pupuk yang salah satunya siklus nitrogen seperti padaGambar 10.20.
b. Kadar Fosfor dalam Pupuk
Sumber utama untuk pembuatan pupuk yang mengandung unsur fosfor adalah deposit batuan yang mengandung fosfat, yaitu kalsium fosfat (Ca3PO4). Batuan fosfat tidak digunakan langsung sebagai pupuk karena tidak larut dalam air. Batuan fosfat terlebih dahulu diolah dengan menambahkan asam sulfat untuk mengubah bentuk ion PO43– menjadi bentuk ion H2PO4–. Reaksi kimianya:
Ca3(PO4)2(s)+2H2SO4(aq)+4H2O(l)→Ca(H2PO4)2(s)+2(CaSO4.2H2O)(s)
Pupuk fosfor yang dibuat dengan cara di atas disebut pupuk superfosfat. Di pasaran, dikenal dengan nama pupuk ES (EnkelSuperfosfat). Pupuk ES berupa padatan berwarna keabu-abuan. Pupuk ini kurang diminati petani karena mahal dan kadar fosfornya rendah. Jika asam yang digunakan sebagai pereaksi adalah asam fosfat (H3PO4) maka reaksi yang terjadi:
Ca3(PO4)2(s) + 4H3PO4(aq) →3Ca(H2PO4)2(s)
Pupuk yang terbentuk dinamakan pupuk TSP (Tripel Superfosfat). Pupuk TSP berupa butiran yang mudah larut dalam air. Oleh karena itu, agar pupuk ini tidak ikut terbawa air hujan, pemakaiannya harus dikubur dalam tanah agak dalam. Pupuk fosfat dapat juga diproduksi dalam bentuk senyawa yang mengandung nitrogen, yaitu senyawa amonium fosfat [(NH4)H2PO4dan (NH4)2HPO4]. Pupuk ini dibuat melalui reaksi amonia dan asam fosfat.
Tabel 10.5 Kadar Fosfor dalam Pupuk
Pupuk | Kadar Fosfor |
ES | ±20% |
TSP | ± 50% |
c. Kadar Kalium dalam Pupuk
Jenis pupuk kalium yang beredar di pasaran dikenal dengan nama pupuk KCl dan pupuk ZK. Pupuk ZK adalah senyawa kalium sulfat (K2SO4). Kedua jenis pupuk ini berbentuk butiran berwarna putih. Di pasaran, kedua pupuk ini dibedakan menurut kadar kaliumnya karena kedua pupuk ini tidak murni, tetapi mengandung pengotor. Kadar kalium dalam kedua pupuk tersebut dapat dilihat pada Tabel 10.6.
Tabel 10.6 Kadar Kalium dalam Pupuk
Pupuk | Kadar Kalium |
ZK 90 | ±45% |
ZK 96 | ± 50% |
KCl 80 | ± 50% |
KCl 90 | ± 53% |
Selain pupuk yang mengandung satu macam unsur hara, masih ada jenis pupuk lain yang merupakan campuran unsur-unsur hara seperti pupuk NP (mengandung unsur N dan P) dan pupuk NPK (mengandung unsur N, P, K). Komposisinya dapat dilihat pada Tabel 10.7.
Tabel 10.7 Beberapa Jenis Pupuk Campuran
Jenis Pupuk | Diamofos | Sendawa | NPK | Nitrofoska | Rustika |
Kadar N(%) | 20 | 13 | 15 | 16 | 15 |
Kadar P(%) | 50 | – | 15 | 16 | 15 |
Kadar K(%) | – | 44 | 10 | 21 | 15 |
Oleh karena unsur K berperan dalam proses fosforilasi bersama-sama dengan unsur Mg maka industri pupuk membuat pupuk campuran yang mengandung unsur Mg. Misalnya, pupuk kalium magnesium sulfat yang mengandung sekitar 25% K dan 10% Mg. Pupuk yang harus dipakai oleh petani bergantung pada kesuburan tanah dan jenis tanaman yang akan diberi pupuk. Oleh sebab itu, sebelum menggunakan pupuk tertentu perlu mengetahui dulu kesuburan tanah (kadar unsur hara yang terdapat dalam tanah) dan jenis tanaman yang akan ditanamnya. Untuk itu, para petani tradisional perlu diberi penyuluhan tentang pemakaian jenis pupuk dan penyuluh perlu meneliti terlebih dulu kadar unsur hara yang terdapat di dalam tanah agar jenis pupuk (kadar unsur hara dalam pupuk) yang akan diberikan cocok dengan jenis tanaman yang akan ditanamnya.
Zat-zat yang masuk dalam tubuh makhluk hidup dapat dalam bentuk organik maupun anorganik. Pertukaran zat meliputi anabolisme (penyusunan senyawa-senyawa organik dari senyawa sederhana menjadi senyawa kompleks dengan menggunakan energi) dan katabolisme (penguraian senyawa-senyawa organik yang kompleks menjadi sederhana dengan menghasilkan energi yang digunakan oleh makhluk hidup untuk berbagai kegiatan).Makhluk hidup memerlukan materi dan energi untuk pertumbuhannya. Berdasarkan cara mendapatkan materi dan energi, setiap makhluk hidup dibedakan menjadi 4 kelompok, yaitu: fotoautotrof, kemoautotrof, fotoheterotrof, dan kemoheterotrof. Makhluk hidup autotrof dapat mensintesis makanannya sendiri. Berdasarkan cara hidupnya, makhluk hidup heterotrof dapat dibedakan menjadi dua kelompok, yaitu: saprofit dan simbion (helotisme = parasitisme, mutualisme, dan komensalisme).
Zat-zat penyusun tubuh tumbuhan diperoleh dengan analisis kimia, kultur air, kultur pasir dan analisis abu yang menghasilkan unsur hara makro, unsur hara mikro dan unsur tambahan. Kekurangan unsur-unsur hara tersebut akan menyebabkan gejala-gejala klinis tanaman seperti tanaman menjadi kuning, kekeringan, layu sampai mengalami kematian.
Tumbuhan juga melakukan katabolisme (respirasi) dan anabolisme (fotosintesis dan kemosintesis). Katabolisme adalah reaksi penguraian senyawa kompleks menjadi senyawa yang lebih sederhana dengan bantuan enzim. Berdasarkan kebutuhan akan oksigen, respirasi internal dibagi menjadi respirasi aerobik (memerlukan oksigen) dengan tiga tahap yaitu glikolisis, siklus Krebs, dan transpor elektron serta respirasi anaerobik (tidak membutuhkan oksigen) yang menghasilkan fermentasi alkohol, asam laktat, atau asam sitrat.
Fotosintesis adalah peristiwa penyusunan zat organik (gula) dari zat anorganik (air, karbon dioksida) dengan pertolongan energi cahaya. Beberapa ilmuwan yang melakukan penelitian tetang fotosintesis adalah Ingenhousz, T W Engelmann, Sachs, Hill dan Blackman dengan reaksi terang dan reaksi gelap.
Proses penyusunan bahan organik menggunakan energi pemecahan senyawa kimia, disebut kemosintesis. Kemosintesis dilakukan oleh mikroorganisme seperti bakteri belerang (Begiota, Thiotrix), bakteri nitrit (Nitrosomonas), bakteri nitrat (Nitrosobacter), dan bakteri besi (Cladotrix).
Pada peristiwa anabolisme terjadi suatu siklus yang memperlihatkan hubungan antara lingkungan abiotik dengan dunia kehidupan, seperti: daur nitrogen, daur karbon dan oksigen, daur air, daur belerang dan daur fosfor.
Katalisator adalah zat yang dapat mempercepat reaksi tetapi zat tersebut tidak ikut bereaksi. Enzim merupakan biokatalisator yang mempercepat proses metabolisme pada tumbuhan dan hewan. Secara kimia, enzim yang lengkap (holoenzim) tersusun atas dua bagian, yaitu bagian protein dan bagian yang bukan protein.
Ciri-ciri enzim merupakan protein, bekerja secara khusus, dapat digunakan berulang kali, rusak oleh panas, diperlukan dalam jumlah sedikit, dapat bekerja bolak-balik, kerja enzim dipengaruhi lingkungan (suhu, pH, hasil akhir, dan zat penghambat).Penamaan enzim sesuai dengan substratnya, misalnya enzim selulose adalah enzim yang dapat menguraikan selulosa. George Beadle dan Edward Tatum menemukan gen pengendali sintesis protein dan enzim yang dengan teori “one gene, one enzyme”.
Cara kerja enzim seperti teori gembok dan anak kunci (key-lock) dan teori cocok terinduksi (induced fit). Zat yang dapat menghambat kerja enzim disebut inhibitor, dibedakan dalam dua kelompok, yaitu: inhibitor kompetitif, inhibitor non kompetitif, dan inhibitor irreversibel.
.
Enzim dan Peranannya
Reaksi-reaksi yang berlangsung di dalam tubuh makhluk hidup bekerja secara optimal pada suhu 30°C (suhu ruang), misalnya pada suhu tubuh tumbuhan. Sedangkan di dalam tubuh hewan homoitermis berlangsung pada suhu 37°C. Pada suhu tersebut proses oksidasi akan berjalan lambat. Agar reaksi-reaksi berjalan lebih cepat diperlukan katalisator.
Katalisator adalah zat yang dapat mempercepat reaksi tetapi zat tersebut tidak ikut bereaksi. Dalam sel makhluk hidup, reaksi- reaksi kimia dapat berlangsung dengan cepat karena adanya katalisator hidup atau biokatalisator, yaitu : enzim. Enzim merupakan pengatur suatu reaksi. Berikut ini adalah contoh reaksi yang diatur oleh enzim. Contohnya:
Enzim maltase
Maltosa ———-> 2 glukosa
(substrat) <——— (produk)
Bahan tempat enzim bekerja disebut substrat. Dalam contoh reaksi di atas substratnya adalah maltosa. Bahan baru atau materi yang dibentuk sebagai hasil reaksi disebut produk. Dalam contoh reaksi di atas hanya ada 1 produk yaitu glukosa. Enzim yang mengkatalisis adalah maltase. Reaksi tersebut dapat berlangsung ke arah sebaliknya. Dengan kata lain reaksinya dua arah (reversible), maltosa dapat berubah menjadi glukosa dan glukosa dapat berubah menjadi maltosa. Enzim yang bekerja di kedua reaksi adalah maltase. Jika terdapat maltosa lebih banyak daripada glukosa, reaksi berlangsung dari kiri ke kanan. Sebaliknya, jika glukosa terdapat lebih banyak daripada maltosa, maka reaksi berlangsung dari kanan ke kiri.Maltosa ———-> 2 glukosa
(substrat) <——— (produk)
3.3.1. Susunan enzim
Secara kimia, enzim yang lengkap (holoenzim) tersusun atas dua bagian, yaitu bagian protein dan bagian yang bukan protein. Bagian protein disebut apoenzim, bersifat labil (mudah berubah), misalnya terpengaruh oleh suhu dan keasaman. Bagian yang bukan proteindisebut gugus prostetik (aktif), terdiri atas kofaktor atau koenzim. Kofaktor berasal dari molekul anorganik, yaitu logam, misalnya besi, tembaga, dan seng. Sedangkan koenzim merupakan gugus prostetik terdiri atas senyawa organik kompleks, misalnya NADH, FADH, koenzim A, dan vitamin B.
3.3.2. Ciri-ciri enzim
Enzim merupakan suatu protein yang bekerja secara khusus, dapat digunakan berulangkali, rusak oleh panas tinggi, terpengaruh oleh pH, diperlukan dalam jumlah sedikit, dan dapat bekerja secara bolak-balik.
3.3.2.1. Protein
Sebagian besar enzim (kecuali ribozime), adalah protein. Dengan demikian sifat-sifat yang dimilikinya sama dengan sifat sifat protein, yaitu: menggumpal pada suhu tinggi dan terpengaruh oleh pH
3.3.2.2. Bekerja secara khusus
Enzim tertentu hanya dapat mempengaruhi reaksi tertentu, dan tidak dapat mempengaruhi reaksi lainnya. Sebagai contoh: di dalam usus rayap terdapat protozoa yang menghasilkan enzim selulase sehingga rayap dapat hidup dengan makan kayu karena dapt mencerna selulosa (salah satu jenis karbohidrat/polisakarida). Sebaliknya manusia tidak dapat mencerna kayu, meskipun mempunyai enzim amilase, yaitu enzim yang dapat mencerna amilum/pati (yang juga merupakan jenis polisakarida). Enzim amilase dan selulase masing-masing bekerja secara khusus.
3.3.2.3. Dapat digunakan berulang kali
Enzim dapat digunakan berulang kali karena enzim tidak berubah pada saat terjadi reaksi. Meskipun dalam jumlah sedikit, adanya enzim dalam suatu reaksi yang dikatalisirnya akan mempercepat reaksi, karena enzim yang telah bekerja dalam reaksi tersebut dapat digunakan kembali.
3.3.2.4. Rusak oleh panas
Enzim adalah suatu protein yang dapat rusak oleh panas disebut denaturasi. Kebanyakan enzim rusak pada suhu di atas 50°C. Reaksi kimia akan meningkat dua kali lipat dengan kenaikan suhu sebesar 10oC. Kenaikan suhu di atas suhu 50°C tidak dapat meningkatkan reaksi yang dikatalisir oleh enzim, tetapi justru menurunkan atau menghentikan reaksi tersebut. Hal ini disebabkan enzimnya rusak sehingga enzim tersebut tidak dapat bekerja. Demikian juga apabila kita memesan enzim-enzim dari perjalanan, dan enzim tersebut disimpan dalam lemari es. Suhu rendah tidak merusak enzim tetapi hanya menonaktifkannya saja.
3.3.2.5. Diperlukan dalam jumlah sedikit
Oleh karena enzim berfungsi sebagai mempercepat reaksi, tetapi tidak ikut bereaksi, maka jumlah yang dipakai sebagai katalis tidak perlu banyak. Satu molekul enzim dapat bekerja berkali-kali, selama molekul tersebut tidak rusak.
3.3.2.6. Dapat bekerja bolak-balik
Umumnya enzim dapat bekerja secara bolak-balik. Artinya, suatu enzim dapat bekerja menguraikan suatu senyawa menjadi senyawa-senyawa lain, dan sebaliknya dapat pula bekerja menyusun senyawa-senyawa itu menjadi senyawa semula. Pada tumbuhan, proses fotosintesis menghasilkan glukosa. Apabila glukosa yang dihasilkan dalam jumlah banyak, maka glukosa tersebut diubah dan disimpan dalam bentuk pati. Pada saat diperlukan, misalnya untuk pertumbuhan, pati yang disimpan sebagai cadangan makanan tersebut diubah kembali menjadi glukosa.
3.3.2.7. Kerja enzim dipengaruhi lingkungan
Lingkungan yang berpengaruh pada kerja enzim adalah suhu, pH, hasil akhir, dan zat penghambat.
3.3.2.7.1 Suhu
Enzim bekerja optimal pada suhu 30°C atau pada suhu tubuh dan akan rusak pada suhu tinggi. Biasanya enzim bersifat nonaktif pada suhu rendah (0°C atau di bawahnya), tetapi tidak rusak. Jika suhunya kembali normal enzim mampu bekerja kembali. Sementara pada suhu tinggi, enzim rusak dan tidak dapat berfungsi kembali.
3.3.2.7.2. pH
Enzim bekerja optimal pada pH tertentu, umumnya pada pH netral. Pada kondisi asam atau basa, kerja enzim terhambat. Agar enzim dapat bekerja secara maksimal, pada penelitian/percobaan yang menggunakan enzim, kondisi pH larutan dijaga agar tidak berubah, yaitu dengan menggunakan larutan penyangga (buffer)
3.3.2.7.3. Hasil akhir
Kerja enzim dipengaruhi hasil akhir. Hasil akhir yang menumpuk menyebabkan enzim sulit “bertemu’ dengan substrat. Semakin menumpuk hasil akhir, semakin lambat kerja enzim.
3.3.2.7.4. Zat penghambat
Zat yang dapat menghambat kerja enzim disebut zat penghambat atau inhibitor. Zat tersebut memiliki struktur seperti enzim yang dapat masuk ke substrat, atau ada yang memiliki struktur seperti substrat sehingga enzim salah masuk ke penghambat tersebut. Hal ini dapat dijelaskan sebagai berikut: semisal enzim itu anak kunci, terdapat zat penghambat (inhibitor) yang:
- strukturnya mirip anak kunci (enzim), sehingga zat penghambat itu dapat masuk ke dalam gembok kunci (substrat).
- bentuknya mirip gembok kunci (substrat), sehingga enzim sebagai anak kunci “keliru masuk ” ke anak kunci palsu.
3.3.3. Penamaan enzim
Enzim diberi nama sesuai dengan substratnya, diberikan akhiran ase.
a. Enzim selulase, adalah enzim yang dapat menguraikan selulosa.
b. Enzim lipase, menguraikan lipid atau lemak.
c. Enzim protease, menguraikan protein.
d. Enzim karbohidrase, menguraikan karbohidrat.
Karbohidrase merupakan suatu kelompok enzim. Termasuk di dalamnya amilase, menguraikan amilum menjadi maltosa dan maltase, menguraikan maltosa menjadi glukosa. Ada dua cara penamaan enzim, yaitu secara sistematis (berdasarkan atas reaksi yang terjadi) dan trivial (nama singkat).
Contohnya:
ATP+ glukosa ADP+Glukosa 6-Fosfat
Nama sistematik: ATP: Glukosa 6-Fosfat
Nama trivial : Heksokinase
Dengan berkembangnya ilmu genetika dan dilakukannya berbagai percobaan di bidang ini, dapat dibuktikan bahwa pembentukan enzim atau kelompok enzim diatur oleh gen atau kelompok gen dalam kromosom. George Beadle dan Edward Tatum mendapat hadiah novel pada tahun 1958 atas jasa mereka menemukan gen pengendali sintesis protein dan enzim yang disimpulkan dalam suatu teori “one gene, one enzyme”.
3.3.4. Cara kerja enzim
Molekul selalu bergerak dan bertumbukan satu sama lain. Jika suatu molekul substrat menumbuk molekul enzim yang tepat, maka akan menempel pada enzim.Tempat menempelnya molekul substrat pada enzim disebut sisi aktif. Kemudian terjadi reaksi dan terbentuk molekul produk. Ada 2 teori mengenai kerja enzim, yaitu:
a. Teori gembok anak kunci (key-lock)
Sisi aktif enzim mempunyai bentuk tertentu yang hanya sesuai untuk satu jenis substrat saja Gambar 3.4 A) Substrat sesuai dengan sisi aktif seperti gembok kunci dengan anak kuncinya. Hal itu menyebabkan enzim bekerja secara spesifik. Jika enzim mengalami denaturasi (rusak) karena panas, bentuk sisi aktif berubah sehingga substrat tidak sesuai lagi. Perubahan pH juga mempunyai pengaruh yang sama.
b. Teori cocok terinduksi (induced fit).
Sisi aktif enzim lebih fleksibel dalam menyesuaikan struktur substrat. Ikatan antara enzim dan substrat dapat berubah menyesuaikan dengan substrat.
3.3.5. Inhibitor
Merupakan zat yang dapat menghambat kerja enzim. Bersifat reversible dan irreversible. Inhibitor reversible dibedakan menjadi inhibitor kompetitif dan nonkompetitif (Gambar 3.4B )
a. Inhibitor kompetitif
Menghambat kerja enzim dengan menempati sisi aktif enzim. Inhibitor ini besaing dengan substrat untuk berikatan dengan sisi aktif enzim. Pengambatan bersifat reversibel (dapat kembali seperti semula) dan dapat dihilangkan dengan menambah konsentrasi substrat.
Inhibitor kompetitif misalnya malonat dan oksalosuksinat, yang bersaing dengan substrat untuk berikatan dengan enzim suksinat dehidrogenase, yaitu enzim yang bekerja pada substrat oseli suksinat.
b. Inhibitor nonkompetitif
Inhibitor ini biasanya berupa senyawa kimia yang tidak mirip dengan substrat dan berikatan pada sisi selain sisi aktif enzim. Ikatan ini menyebabkan perubahan bentuk enzim sehingga sisi aktif enzim tidak sesuai lagi dengan substratnya. Contohnya antibiotik penisilin menghambat kerja enzim penyusun dinding sel bakteri. Inhibitor ini bersifat reversible tetapi tidak dapat dihilangkan dengan menambahkan konsentrasi substrat.
c. Inhibitor irresibel
Inhibitor ini berikatan dengan sisi aktif enzim secara kuat sehingga tidak dapat terlepas. Enzim menjadi tidak aktif dan tidak dapat kembali seperti semula (irreversible). Contohnya, diisopropilfluorofosfat yang menghambat kerja asetilkolin-esterase.
Katabolisme (Respirasi)
Katabolisme adalah reaksi penguraian senyawa kompleks menjadi senyawa yang lebih sederhana dengan bantuan enzim. Penguraian suatu senyawa dapat menghasilkan energi. Energi kimia yang terdapat dalam senyawa tidak dapat digunakan secara langsung oleh sel. Energi akan diubah terlebih dahulu menjadi adenosin trifosfat (ATP) yang dapat digunakan oleh sel sebagai sumber energi terpakai. Energi itu digunakan untuk melangsungkan reaksi-reaksi kimia, pertumbuhan, transportasi, reproduksi, dan merespons rangsanganContoh katabolisme adalah proses pernafasan sel atau respirasi. Respirasi adalah proses penguraian bahan makanan yang menghasilkan energi. Respirasi dilakukan oleh semua sel penyusun makhluk hidup, baik sel-sel tumbuhan, bakteri, protista, cendawan, maupun sel hewan dan manusia. Respirasi dilakukan baik siang maupun malam. Ditinjau dari bentuknya respirasi terbagi dua macam, yaitu respirasi eksternal (luar) dan internal (dalam). Respirasi eksternal meliputi proses pengambilan oksigen dan pengeluaran karbondioksida dan uap air antara makhluk hidup dengan lingkungannya, misalnya pada tumbuhan, hewan, dan manusia. Respirasi internal disebut juga pernafasan seluler karena pernafasan ini terjadi di dalam sel, yaitu di dalam sitoplasma dan mitokondria.
Berdasarkan kebutuhan akan oksigen, respirasi internal dibagi menjadi respirasi aerobik (memerlukan oksigen) dan respirasi anaerobik (tidak membutuhkan oksigen). makhluk hidup, baik sel-sel tumbuhan, bakteri, protista, cendawan, maupun sel hewan dan manusia. Respirasi dilakukan baik siang maupun malam. Ditinjau dari bentuknya respirasi terbagi dua macam, yaitu respirasi eksternal (luar) dan internal (dalam). Respirasi eksternal meliputi proses pengambilan oksigen dan pengeluaran karbondioksida dan uap air antara makhluk hidup dengan lingkungannya, misalnya pada tumbuhan, hewan, dan manusia. Respirasi internal disebut juga pernafasan seluler karena pernafasan ini terjadi di dalam sel, yaitu di dalam sitoplasma dan mitokondria.
Berdasarkan kebutuhan akan oksigen, respirasi internal dibagi menjadi respirasi aerobik (memerlukan oksigen) dan respirasi anaerobik (tidak membutuhkan oksigen).
3.1.1. Respirasi Aerob
Respirasi aerob merupakan serangkaian reaksi enzimatis yang mengubah glukosa secara sempurna menjadi CO2, H2O, dan menghasilkan energi sebesar 38 ATP. Pada pernapasan ini, pembebasan energi menggunakan oksigen bebas dari udara. Pada tumbuhan, oksigen yang dibutuhkan diperoleh dari udara melalui mulut daun dan lentisel. Zat organik terutama karbohidrat dipecahkan. Dalam respirasi aerob, glukosa dioksidasi oleh oksigen, dan reaksi kimianya dapat digambarkan sebagai berikut:
Respirasi aerob merupakan serangkaian reaksi enzimatis yang mengubah glukosa secara sempurna menjadi CO2, H2O, dan menghasilkan energi sebesar 38 ATP. Pada pernapasan ini, pembebasan energi menggunakan oksigen bebas dari udara. Pada tumbuhan, oksigen yang dibutuhkan diperoleh dari udara melalui mulut daun dan lentisel. Zat organik terutama karbohidrat dipecahkan. Dalam respirasi aerob, glukosa dioksidasi oleh oksigen, dan reaksi kimianya dapat digambarkan sebagai berikut:
mthri
C6H12O6 + 6 H2O + 6 O2 —-> 6 CO2 + 12 H2O + 675 kal
klorofil
Dalam kenyataan, reaksi yang terjadi tidak sesederhana itu. Banyak tahapan reaksi yang terjadi dari awal hingga terbentuknya energi. Reaksi-reaksi itu dapat dibedakan menjadi tiga tahapan, yaitu: glikolisis, siklus Krebs, dan transpor elektron (lihat Gambar3.1)C6H12O6 + 6 H2O + 6 O2 —-> 6 CO2 + 12 H2O + 675 kal
klorofil
Gambar 3.1. Respirasi aerob (Campbell, 2006).
3.1.1.1. Glikolisis
Glikolisis adalah serangkaian reaksi enzimatis yang memecah glukosa (terdiri dari 6 atom C) menjadi asam piruvat (terdiri dari 3 atom C). Reaksi ini melepaskan energi untuk menghasilkan ATP dan NADH2. Glikolisis terjadi di sitoplasma dan tidak memerlukan oksigen. Reaksinya adalah sebagai berikut:
C6H12O6 —-> 2 asam piruvat + 2 ATP + 2 NADH + 2H+
Asam piruvat yang dihasilkan akan memasuki mitokondria untuk melakukan siklus Krebs. Namun sebelum memasuki siklus Krebs, asam piruvat (3C) ini diubah terlebih dahulu menjadi asetil koA (2C) di dalam matriks mitokondria melalui proses dekarboksilasi oksidatif. Senyawa selain glukosa, misalnya fruktosa, manosa, galaktosa, dan lemak dapat pula mengalami metabolisme melalui jalur glikolisis dengan bantuan enzim-enzim tertentu.
3.1.1.2. Siklus Krebs
Siklus Krebs merupakan serangkaian reaksi metabolisme yang mengubah asetil koA yang direaksikan dengan asam oksaloasetat (4C) menjadi asam sitrat (6C). Selanjutnya asam oksaloasetat memasuki daur menjadi berbagai macam zat yang akhirnya akan membentuk oksaloasetat lagi.
Pada siklus Krebs dihasilkan energi dalam bentuk ATP dan molekul pembawa hidrogen, yaitu : NADH dan FADH2. Hidrogen yang terdapat dalam NADH dan FADH2 tersebut akan dibawa ke sistem transpor elektron. Seluruh tahapan reaksi dalam siklus Krebs terjadi di dalam mitokondria. Dalam siklus ini, asetil koA dioksidasi secara sempurna menjadi CO2
3.1.1.3. Transpor Elektron
Transpor elektron adalah serangkaian reaksi pemindahan elektron melalui proses reaksi redoks (reduksi-oksidasi). Hidrogen yang terdapat pada molekul NADH serta FADH2 ditranspor dalam serangkaian reaksi redoks yang melibatkan enzim, sitokrom, quinon, pirodoksin, dan flavoprotein. Pada akhir transport elektron, oksigen akan mengoksidasi elektron dan ion H menghasilkan air (H20). Transport elektron terjadi pada membran dalam mitokondria.
3.1.2. Respirasi anaerob
Pernahkah kalian membuat atau melihat cara membuat tape ? Tape dibuat dari singkong yang dikukus lalu ditaburi dengan ragi. Jika setelah diberi ragi singkong tersebut dibiarkan dalam udara terbuka maka kalian tidak mendapatkan tape yang diinginkan, mengapa demikian ?Pembuatan tape merupakan salah satu contoh proses fermentasi yang menghasilkan alkohol. Fermentasi alkohol merupakan proses respirasi anaerob, yang tidak memerlukan oksigen. Oleh karena itu jika membuat tape, singkong yang telah ditaburi dengan ragi tersebut disimpan dalam ruang tertutup yang tidak atau sedikit mengandung udara. Misalnya setelah singkong beragi tersebut ditaruh dalam panci, kemudian panci tersebut dibungkus rapat dengan kain agar kondisinya menjadi anaerob.
Respirasi anaerob merupakan serangkaian reaksi enzimatis yang memecah glukosa secara tidak sempurna karena kekurangan oksigen. Pada manusia, respirasi anaerob menghasilkan asam laktat sehingga menyebabkan rasa lelah, sedangkan pada tumbuhan, ragi, reaksi ini menghasilkan CO2 dan alkohol. Respirasi anaerob hanya menghasilkan sedikit energi, yaitu 2 ATP.
Gambar 3.2 Respirasi anaerob menghasilkan:asam laktat (A) atau etanol (B).
Respirasi anaerob, disebut fermentasi atau peragian. Pada umumnya respirasi ini terjadi pada tumbuhan, fungi dan bakteri. Proses fermentasi sering disebut sesuai dengan hasil akhir yang terbentuk. Misalnya: fermentasi alkohol bila hasil akhir fermentasiberupa alkohol. Menurut hasil samping yang terbentuk, maka fermentasi dibedakan atas:
a. fermentasi alkohol pada ragi (khamir) dan bakteri anaerobik.
b. fermentasi asam laktat pada umumnya di sel otot.
c. fermentasi asam sitrat pada bakteri heterotrof.
Bahan baku respirasi anaerobik pada peragian adalah glukosa, disamping itu juga terdapat fruktosa, galaktosa, dan manosa. Hasil akhirnya adalah alkohol, karbon dioksida, dan energi. Alkohol bersifat racun bagi sel-sel ragi. Sel-sel ragi hanya tahan terhadap alkohol pada kadar 9-18%. Lebih tinggi dari kadar tersebut, proses alkoholisasi (pembuatan alkohol) terhenti. Hal tersebut merupakan suatu kendala pada industri pembuatan alkohol.
Oleh karena glukosa tidak terurai lengkap menjadi air dan karbon dioksida, maka energi yang dihasilkan lebih kecil dibandingk an respirasi aerobik. Pada respirasi aerobik dihasilkan 675kal, sedangkan pada respirasi anaerobik hanya dihasilkan 21 kal. seperti reaksi dibawah ini:
C6H12O6 —–> 2 C2H5OH + 2 CO2 + 21 kal
Dari persamaan reaksi tersebut terlihat bahwa oksigen tidak diperlukan. Bahkan, bakteri anaerobik seperti Clostridium tetani (penyebab tetanus) tidak dapat hidup jika berhubungan dengan udara bebas. Infeksi tetanus dapat terjadi jika luka dalam atau tertutup sehingga memberi kemungkinan bakteri Clostridium tersebut tumbuh subur karena dalam lingkungan anaerob.
Sitem Metabolisme..
Setiap makhluk hidup mengadakan pertukaran zat dengan lingkungannya, artinya makhluk hidup tidak hanya mengambil zat-zat tertentu dari lingkungannya, tetapi ia juga mengembalikan zat-zat tertentu kedalam lingkungannya. Inilah yang disebut proses metabolisme. Metabolisme adalah reaksi kimia untuk pembentukkan dan perombakan bahan organik. Metabolisme dibedakan ke dalam anabolisme dan katabolisme.1. Anabolisme, yaitu pembentukan senyawa-senyawa kompleks dari senyawa sederhana. Proses ini memerlukan energi.
2. Katabolisme, yaitu penguraian senyawa kompleks menjadi senyawa-senyawa sederhana. Proses ini menghasilkan energi. Energi ini dapat digunakan oleh makhluk hidup untuk berbagai kegiatan.
Makhluk hidup memerlukan materi dan energi untuk pertumbuhannya. Materi diperoleh dari tanah, air, dan udara. Energi diperoleh dari matahari, reaksi kimia, atau dari makanan. Berdasarkan cara mendapatkan materi dan energi, setiap makhluk hidup dibedakan menjadi 4 kelompok, yaitu:
1. fotoautotrof (mensintesis makanan sendiri dengan menggunakan energi cahaya matahari melalui proses fotosintesis). Contoh: tumbuhan, dan makhluk hidup berklorofil lainnya.
2. kemoautotrof (mensintesis makanan sendiri dengan menggunakan energi dari reaksi kimia). Contohnya: bakteri Nitrosomonas, bakteri sulfur, dan bakteri besi).
3. fotoheterotrof (mengubah zat organik dengan bantuan energi matahari dijadikan makanannya. Contohnya: bakteri purple/ungu.
4. kemoheterotrof (mengubah zat organik dengan bantuan energi dari reaksi kimia.
Makhluk hidup autotrof dapat mensintesis makanannya sendiri, sedangkan makhluk hidup heterotrof tidak dapat mensintesis makanannya sendiri. Untuk membangun tubuh maupun sebagai sumber energinya, makhluk hidup heterotrof mengambil zat-zat organik dari lingkungannya. Jadi makhluk hidup yang tidak dapat membuat makanannya sendiri, secara langsung atau tidak langsung, hidupnya bergantung pada makhluk lain. Berdasarkan cara hidupnya, makhluk hidup heterotrof dapat dibedakan menjadi dua kelompok, yaitu:
1. Saprofit, yaitu makhluk hidup yang hidupnya bergantung pada sisa-sisa makhluk hidup lainnya yaitu dengan menguraikannya sehingga disebut juga makhluk hidup pengurai. Jenis tumbuhan ini menggunakan energi yang tersimpan dalam sisa-sisa makhluk hidup yang telah mati tersebut. Contoh sebagian besar jamur dan bakteri.
2. Simbion, yaitu makhluk hidup yang hidup bersama dengan makhluk hidup yang lain.
a. Simbion helotisme = simbion parasitisme, kedua simbion hidup bersama, yang satu (inang) dirugikan dan yang lain (parasit)
mendapatkan keuntungan.
b. Simbion mutualisme, kedua simbion yang hidup bersama ini mendapat keuntungan. Contoh : bakteri Rhizobium yang hidup pada
bintil akar tumbuhan kacang-kacangan (legum)
c. Simbion komensalisme, dalam hidup bersama ini, makhluk hidup yang satu mendapatkan keuntungan, sedang makhluk hidup yang
lain tidak mendapat rugi maupun untung.
Parasit adalah makhluk hidup yang sebagian besar atau seluruh kebutuhan hidupnya bergantung pada makhluk lain yang
ditumpanginya (inang).
1. Berdasarkan cara hidupnya, parasit dapat dibedakan atas:
a. Parasit obligat, yaitu makhluk hidup yang hanya dapat hidup sebagai parasit saja, hidupnya bergantung sekali pada inang. Contoh tali putri (Cassytha filiformis).
b. Parasit fakultatif, yaitu makhluk hidup yang hidupnya tidak hanya sebagai parasit, tetapi juga dapat hidup sebagai saprofit. Contoh: Phytophthora parasitica pada tembakau dan tomat.
2. Berdasarkan kebutuhan makanannya, parasit dibagi atas:
a. Parasit sejati, parasit yang seluruh kebutuhannya diambil dari inangnya. Contoh: tali putri, tumbuhan ini mengisap makanannya dari inangnya dengan akar isap (haustorium).
b. Semi atau parasit (parasit setengah), yaitu parasit yang sebagian dari kebutuhan makanannya diambil dari inangnya. Contoh: Benalu.
c. Hiper parasit, yaitu parasit yang hidup pada parasit lainnya. Contoh: Vicum sp. tumbuh pada benalu.
Tubuh makhluk hidup disusun oleh materi. Materi diperoleh dari udara (misalnya oksigen untuk pernafasan, karbon dioksida untuk fotosintesis), air dan bahan-bahan yang terlarut, atau dari makanan. Nutrien adalah zat hara yang dibutuhkan setiap makhluk hidup untuk keperluan penyusun tubuhnya. Setiap makhluk hidup membutuhkan nutrien organik maupun nutrien anorganik. Lingkungan abiotik hanya menyediakan nutrient anorganik saja. Nutrient organik dapat dibuat dari nutrient anorganik bagi makhluk hidup autotrof. Prosesnya disebut asimilasi. Asimilasi dapat secara fotosintesis (asimilasi karbon) maupun secara kemosintesis (asimilasi nitrogen).
Beberapa tumbuhan yang hidup di tempat gersang, kekurangan memperoleh nutrien tertentu. Pernahkah kalian melihat kantong semar (Nephentes). Dinamakan kantong semar karena sebagian dari daun ada yang mengalami modifikasi membentuk piala (berbentuk seperti kantung). Tahukah kalian, apa fungsi kantong tersebut? Kantong ini berfungsi sebagai perangkap serangga. Serangga yang terperangkap akan menempel di dalamnya dan akhirnya mati. Serangga ini akan dicerna dan menghasilkan nutrisi bagi tumbuhan tersebut, terutama nitrogen, yang umumnya sedikit dijumpai di daerah gersang. Oleh karena itu, tumbuhan ini disebut juga insektivora ,yang artinya pemakan serangga. Tumbuhan pemakan serangga ini juga melakukan asimilasi karbon (C).
Tubuh tumbuhan disusun oleh berbagai macam zat. Cara untuk mengetahui unsur-unsur yang terdapat dalam tubuh tumbuhtumbuhan adalah dengan analisis kimia melalui kultur air atau kultur pasir. Tujuan dilakukan kedua kultur tersebut adalah:
a. Untuk mengetahui unsur-unsur yang diperlukan
b. Untuk mengetahui bentuk dan asal unsur-unsur tersebut diambil oleh tumbuh-tumbuhan.
Cara lain untuk mengetahui unsur-unsur penyusun tubuh tumbuhan adalah dengan Analisis Abu. Tumbuhan yang dianalisis dikeringkan sampai 110ÂșC untuk mengetahui bobot keringnya, kemudian dibakar serta diperiksa kadar abu serta gas-gas yang keluar, untuk menunjukkan adanya berbagai macam unsur yang menyusun tubuh tumbuhan. Unsur-unsur ini dapat dibedakan atas tiga golongan, yaitu:
1. Unsur- unsur makro, yaitu unsur-unsur yang selalu terdapat pada tubuh tumbuhan dalam jumlah banyak dan harus ada di tubuh tanaman. Unsur-unsur makro terdiri dari: C, H, O, N, S, P, Ca, K, Mg, Fe. Unsur-unsur ini dikenal juga sebagai penyusun tubuh tumbuhan sehingga disebut unsur-unsur klasik atau unsur-unsur Sachs, sesuai dengan nama penemunya.
2. Unsur-unsur mikro, yaitu unsur yang mutlak diperlukan oleh tumbuhan, tetapi jumlahnya sangat kecil. Dalam jumlah banyak unsur ini dapat menyebabkan keracunan. Unsur-unsurnya adalah: Cl, Zn, B, Mo, Mn, dan Cu.
3. Unsur-unsur tambahan, yaitu unsur yang hanya terdapat pada tumbuhan tertentu, kadang-kadang dalam persentasi yang cukup tinggi misalnya, Na, Al, Cl, dan Si.
Fungsi unsur-unsur tersebut untuk tumbuh-tumbuhan:
C-H-O: Pembentuk karbohidrat, protein, lemak, asam nukleat (DNA dan RNA), serta senyawa organik lainnya.
N : Pembentuk protein, dan asam nukleat
P : Pembentuk asam nukleat, ATP, ADP
S : Pembentuk protein.
K : Pembentuk enzim.
Ca : Pembentuk dinding sel.
Mg : Pembentuk klorofil.
Fe : Sebagai katalisator.
Semua unsur-unsur yang diperlukan diambil dari dalam tanah oleh akar dalam bentuk larutan garam mineral, kecuali CO 2 (untuk berfotosintesis) dan O 2 (untuk berespirasi) yang diambil dari udara dalam bentuk gas. Karbondioksida masuk melalui ke dalam tubuh tumbuhan melalui mulut daun (stoma) dan lentisel. Dahulu dianggap bahwa semua zat yang diperlukan tumbuhan diambil dari humus yang terdapat di dalam tanah. Pendapat itu dikenal dengan teori humus.
Menurut hasil penelitian para ahli, tumbuhan mengambil zat-zat dari lingkungannya. Sekarang timbul pertanyaan zat-zat apakah yang diambil dari tanah, dan zat-zat apa yang berasal dari udara? Bagaimanakah cara mengetahui bahwa zat-zat tertentu mutlak diperlukan oleh tumbuhan sedangkan zat-zat
lainnya tidak begitu dibutuhkan tumbuhan? Dengan menjalankan percobaan menggunakan kultur air atau kultur pasir yang diberi zat makanan, pertanyaan diatas dapat dijawab sebagai berikut. Unsur C diambil dari udara dalam bentuk CO2. Hal ini dapat dibuktikan dengan percobaan mengalirkan udara tanpa CO2 kepada tumbuhan, ternyata pertumbuhannya berhenti.
Unsur-unsur selain C yang diperlukan tumbuhan diambil dalam bentuk zat anorganik berupa ion-ion garam. Baik dalam bentuk anion maupun kation dalam larutan. Dengan mengurangi zat-zat makanan dalam larutan secara bergantian, maka diketahui ada zat mutlak diperlukan (sebagai unsur esensial) dan ada yang tidak (non esensial). Bila zat yang mutlak diperlukan tidak diberikan, tumbuhan akan memperlihatkan gejala sakit (kekurangan unsur), yang disebutdefisiensi. Selanjutnya d apat kita lihat fungsi unsur-unsur di atas dan gejala defisiensi yang muncul jika kekurangan unsur tersebut dialami oleh suatu tumbuhan.
Unsur-unsur C, H, O. Unsur-unsur ini mempunyai peranan dalam proses fotosintesis (asimilasi karbon) yang diambil dalam bentuk CO2 dari udara, dan H2O dari dalam tanah. Kekurangan air berakibat fatal pada tumbuhan, yaitu menyebabkan tumbuhan menjadi layu, kering dan mati.
Nitrogen (N). Unsur ini terutama dibutuhkan untuk membentuk protein bersama-sama dengan unsur C, H, O. Protein banyak dibutuhkan pada bagian yang sedang tumbuh sehingga penting sekali untuk pertumbuhan vegetatif. Gejala kekurangan unsur N, terutama pada daun tua, adalah warna daun menjadi hijau muda dan akhirnya kuning, tanaman menjadi kerdil, buah tak sempurna, kecil-kecil dan lekas masak.
Fosfor (P). Unsur ini terutama dibutuhkan untuk pembentukan bunga dan buah, yakni pada bagian-bagian tanaman yang sedang dalam pertumbuhan, jika kekurangan unsur P, pada daun tua terlihat gejala antara lain warna daun hijau tua, atau lebih tua daripada biasanya, tanaman kerdil, pembentukan buah jelek, menurunkan hasil biji.
Kalium (K). Unsur ini bersifat bergerak (mobil). Peranannya adalah memperlancar pertukaran zat, proses asimilasi, dan memperkuat serabut-serabut, sehingga secara langsung memperkuat tubuh tumbuhan itu. Defisiensi unsur ini memperlihatkan gejala pada daun tuanya, daun mula-mula berkerut, ujung daun tepinya pucat (klorosis), kadang-kadang gugur dan buahnya lekas gugur, umbinya berkurang, dan batangnya juga lemah.
Sulfur (S). Unsur ini perlu untuk membentuk protein bersama unsur C, H, O, dan N. Selain itu, unsur ini untuk mmembentuk vitamin B1, juga penting untuk ketahanan dan pertumbuhan. Defisiensi unsur ini pada daun muda terlihat warnanya menjadi hijau muda, kadangkadang tidak merata sehingga menjadi kekuning-kuningan.
Magnesium (Mg). Unsur ini digunakan untuk membentuk klorofil. Defisiensi Mg terjadi pada daun tua, memperlihatkan gejala klorosis pada tulang-tulang daun dan akhirnya menjadi kuning dan lemah.
Kalsium (Ca). Unsur ini banyak terdapat pada daun dan batang, tetapi kurang pada biji. Unsur ini berguna mengatur permeablitas dinding sel. Kalau ion K mempertinggi permeabilitas dinding sel, maka ion Ca sebaliknya. Hal ini mencegah terlalu banyaknya pengisapan air agar struktur koloid sitoplasma tidak menjadi rusak. Defisiensi Ca terjadi pada daun muda, terlihat gejala klorosis pada ujung dan tepi daun, kemudian ke tulang daun dan pucuk. Selain itu kuncupnya akan mati, dan perakaran kurang sekali.
Ferum atau besi (Fe). Unsur ini merupakan katalisator pada pembentukan hijau daun. Selain itu berfungsi untuk pembentukan enzim-enzim pernapasan yang mengoksidasikan karbohidrat menjadi CO2 dan H2 O. Defisiensi Fe pada tanaman muda memperlihatkan klorosis diantara tulang-tulang daun dari daun muda dan kemudian menjadi kuning.
Mangan (Mn). Unsur ini penting untuk pembentukan hijau daun dan enzim-enzim pernapasan. Defisiensinya menyebabkan daun muda mengalami klorosis di antara tulang-tulang daun, sedangkan tulang daunnya sendiri tidak.
Boron (B). Unsur ini berguna dalam pertumbuhan jaringan. Defisiensinya menyebabkan pertumbuhan meristem berkas pembuluh angkut terganggu. Kuncup dan pucuknya mati dan daun mengalami klorosis di tepinya.
Cuprum atau tembaga (Cu). Unsur ini penting dalam mereduksi nitrat. Defisiensinya mengakibatkan pertumbuhan terganggu dan bila terlalu banyak akan menjadi racun.
Zincum atau Seng (Zn). Unsur ini penting untuk mengaktifkan beberapa enzim dalam pembentukan asam indol asetat (hormon tumbuh tanaman). Defisiensi seng mengakibatkan salah tumbuh pada ujung akar yang akhirnya menghambat pertumbuhan.
0 komentar:
Posting Komentar